تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Swinnerton-Dyer Conjecture
المؤلف:
Birch, B. and Swinnerton-Dyer, H
المصدر:
"Notes on Elliptic Curves. II." J. reine angew. Math. 218
الجزء والصفحة:
...
12-7-2020
1005
Swinnerton-Dyer Conjecture
In the early 1960s, B. Birch and H. P. F. Swinnerton-Dyer conjectured that if a given elliptic curve has an infinite number of solutions, then the associated -series has value 0 at a certain fixed point. In 1976, Coates and Wiles showed that elliptic curves with complex multiplication having an infinite number of solutions have
-series which are zero at the relevant fixed point (Coates-Wiles theorem), but they were unable to prove the converse. V. Kolyvagin extended this result to modular curves.
REFERENCES:
Birch, B. and Swinnerton-Dyer, H. "Notes on Elliptic Curves. II." J. reine angew. Math. 218, 79-108, 1965.
Cipra, B. "Fermat Prover Points to Next Challenges." Science 271, 1668-1669, 1996.
Clay Mathematics Institute. "The Birch and Swinnerton-Dyer Conjecture." https://www.claymath.org/millennium/Birch_and_Swinnerton-Dyer_Conjecture/.
Ireland, K. and Rosen, M. "New Results on the Birch-Swinnerton-Dyer Conjecture." §20.5 in A Classical Introduction to Modern Number Theory, 2nd ed. New York: Springer-Verlag, pp. 353-357, 1990.
Mazur, B. and Stevens, G. (Eds.). p-Adic Monodromy and the Birch and Swinnerton-Dyer Conjecture. Providence, RI: Amer. Math. Soc., 1994.
Wiles, A. "The Birch and Swinnerton-Dyer Conjecture." https://www.claymath.org/millennium/Birch_and_Swinnerton-Dyer_Conjecture/BSD.pdf.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
