Read More
Date: 23-5-2021
![]()
Date: 2-8-2021
![]()
Date: 1-8-2021
![]() |
The Alexander invariant of a knot
is the homology of the infinite cyclic cover of the complement of
, considered as a module over
, the ring of integral laurent polynomials. The Alexander invariant for a classical tame knot is finitely presentable, and only
is significant.
For any knot in
whose complement has the homotopy type of a finite CW-complex, the Alexander invariant is finitely generated and therefore finitely presentable. Because the Alexander invariant of a tame knot in
has a square presentation matrix, its Alexander ideal is principal and it has an Alexander polynomial denoted
.
REFERENCES:
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or Perish Press, pp. 206-207, 1976.
|
|
تحذير من "عادة" خلال تنظيف اللسان.. خطيرة على القلب
|
|
|
|
|
دراسة علمية تحذر من علاقات حب "اصطناعية" ؟!
|
|
|
|
|
العتبة العباسية المقدسة تحذّر من خطورة الحرب الثقافية والأخلاقية التي تستهدف المجتمع الإسلاميّ
|
|
|