Read More
Date: 8-1-2021
![]()
Date: 9-1-2021
![]()
Date: 9-1-2021
![]() |
Introduction to Immobilisation of Enzymes and Cells
The number of new biocatalysts required to support the rapid growth of biotechnology applications is increasing substantially. Although many biocatalysts can be used as free enzymes or as whole cells, immobilisation adds features that can significantly improve the commercial viability and stability. Immobilisation methodology has expanded greatly in the past 40 years in a wide range of analytical, biotransformation and medical applications.1 A consequence of the explosion of this technology is that there is now a bewildering array of permutations for immobilisation of biological material. Biological catalysts have a high degree of individual variability and, although many immobilisation techniques have wide applicability, it is impossible for one or even a few methods to cater for the great diversity of requirements inherent in biological material. This is especially so when the aim is to produce an optimum system in which an immobilised biocatalyst can function at high levels of efficiency, stability and economy.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
سماحة السيد الصافي يؤكد ضرورة تعريف المجتمعات بأهمية مبادئ أهل البيت (عليهم السلام) في إيجاد حلول للمشاكل الاجتماعية
|
|
|