Read More
Date: 2-9-2020
![]()
Date: 30-6-2020
![]()
Date: 1-12-2019
![]() |
Let the multiples ,
, ...,
of an integer such that
be taken. If there are an even number
of least positive residues mod
of these numbers
, then
is a quadratic residue of
. If
is odd,
is a quadratic nonresidue. Gauss's lemma can therefore be stated as
, where
is the Legendre symbol. It was proved by Gauss as a step along the way to the quadratic reciprocity theorem (Nagell 1951).
The following result is known as Euclid's lemma, but is incorrectly termed "Gauss's Lemma" by Séroul (2000, p. 10). Euclid's lemma states that for any two integers and
, suppose
. Then if
is relatively prime to
, then
divides
.
REFERENCES:
Nagell, T. "Gauss's Lemma." §40 in Introduction to Number Theory. New York: Wiley, pp. 139-141, 1951.
Séroul, R. "Gauss's Lemma." §2.4.2 in Programming for Mathematicians. Berlin: Springer-Verlag, pp. 10-11, 2000.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
مؤسسة السجناء السياسيين: سجلنا 120 ألفًا من ضحايا السجون والاعتقالات في عهد النظام السابق
|
|
|