Read More
Date: 17-2-2019
![]()
Date: 17-2-2019
![]()
Date: 6-3-2017
![]() |
If the coefficients of the polynomial
![]() |
(1) |
are specified to be integers, then rational roots must have a numerator which is a factor of and a denominatorwhich is a factor of
(with either sign possible). This follows since a polynomial of polynomial order
with
rational roots can be expressed as
![]() |
(2) |
where the roots are ,
, ..., and
. Factoring out the
s,
![]() |
(3) |
Now, multiplying through,
![]() |
(4) |
where we have not bothered with the other terms. Since the first and last coefficients are and
, all the rational roots of equation (1) are of the form [factors of
]/[factors of
].
REFERENCES:
Bold, B. Famous Problems of Geometry and How to Solve Them. New York: Dover, p. 34, 1982.
Niven, I. M. Numbers: Rational and Irrational. New York: Random House, 1961.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|