1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : علماء الرياضيات : 1600to1649 :

Claude Mylon

المؤلف:  P Costabel

المصدر:  Biography in Dictionary of Scientific Biography

الجزء والصفحة:  ...

18-1-2016

1486

Born: 1618 in Paris, France
Died: 1660 in Paris, France

 

Claude Mylon's father, Benoist Mylon, was a counsellor to Louis XIII and Controller-General of Finance. Claude was his parent's third son and he was brought up in a well-off family. He made the law his profession and Costabel writes [1] that he:-

... was admitted to the bar as an advocate before Parlement in 1641, even though he lacked two years of being twenty-five, the legal age of majority.

Mylon is important in the history of mathematics, not for his own achievements, but for his role in the Académie Parisienne, the group of scholars which was a continuation of the group formed in Paris by Mersenne, which was to form the foundation on which the Paris Academy of Sciences was formed. Mylon joined Mersenne's mathematical circle in around 1645 when he began to take careful notes of mathematical discussions in the group. At this time Mersenne was still in control of the group but on Mersenne's death in 1648 Le Pailleur took over the role of director of the Académie Parisienne. Mylon took on the role of secretary of the academy.

After the death of Le Pailleur in 1654, Mylon had access to all the correspondence between members of the Académie Parisienne and the numerous scientist with whom they had corresponded. At this stage Mylon carried on the important task of making the discoveries of mathematicians available to other mathematicians. He sent information on Fermat's and Frenicle de Bessy's number theory problems to Holland. Fermat had asked for a cube n such that the sum of the divisors of n is a square, and a square n such that the sum of the divisors of n is a cube. Frenicle de Bessy had asked for an integer n such that the sum of the divisors of n is 5n and the sum of the divisors of 5n is 25n. Similarly he asked for an integer n such that the sum of the divisors of n is 7n and the sum of the divisors of 7n is 49n.

Mylon also corresponded with van Schooten about the problems on games of chance, in particular the dice and points problems, that Fermat and Pascal were considering. The dice problem asks how many times one must throw a pair of dice before one expects a double six, while the problem of points asks how to divide the stakes if a game of dice is incomplete. Mylon maintained contact with Pascal after he gave up his mathematical studies and corresponded with Roberval.

Mylon's attempts to contribute to mathematics were much less successful than he was as a communicator of the results of others. He attempted to find the area enclosed by the curve known as the Pearls of Sluze. He also attempted to prove the result found by Wren concerning the length of the arc of the cycloid. As Costabel writes [1]:-


 

  1. P Costabel, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830903099.html

Articles:

  1. J Mesnard, Sur le chemin de l'Académie des sciences : le cercle du mathématicien Claude Mylon (1654--1660), Rev. Histoire Sci. 44 (2) (1991), 241-251.

 

EN

تصفح الموقع بالشكل العمودي