تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Girard Desargues
المؤلف:
J V Field
المصدر:
The Invention of Infinity: Mathematics and Art in the Renaissance
الجزء والصفحة:
...
12-1-2016
1442
Born: 21 February 1591 in Lyon, France
Died: September 1661 in Lyon, France
Little is known about Girard Desargues' personal life. His family (on both his mother's and his fathersearchit's side) had been very rich for several generations and had supplied lawyers and judges to the Parlement in Paris as well as to that in Lyon (then the second most important city in France).
Desargues seems to have made several extended visits to Paris in connection with a lawsuit for the recovery of a huge debt. Despite this loss, the family still owned several large houses in Lyon, a manor house (and its estate) at the nearby village of Vourles, and a small chateau surrounded by the best vineyards in the vicinity. It is thus clear that Desargues had every opportunity of acquiring a good education, could afford to buy what books he chose, and had leisure to indulge in whatever pursuits he might enjoy. In his later years, these seem to have included designing an elaborate spiral staircase, and an ingenious new form of pump, but the most important of Desargues' interests was Geometry. He invented a new, non-Greek way of doing geometry, now called 'projective' or 'modern' geometry. As a mathematician he was very good indeed: highly original and completely rigorous. He is, however, far from lucid in his mathematical style.
When in Paris, Desargues became part of the mathematical circle surrounding Marin Mersenne (1588 - 1648). This circle included Rene Descartes (1597 -1650), Étienne Pascal (1588 -1651) and his son Blaise Pascal (1623 - 1662). It was probably essentially for this limited readership of friends that Desargues prepared his mathematical works, and had them printed. Some of them were later expanded into more publishable form by Abraham Bosse (1602 -1676), who is now best remembered as an engraver, but was also a teacher of perspective.
Desargues wrote on 'practical' subjects such as perspective (1636), the cutting of stones for use in building (1640) and sundials (1640). His writings are, however, dense in content and theoretical in their approach to the subjects concerned. There is none of the wordy and elementary step-by-step explanation which one finds in texts that are truly addressed to artisans.
Desargues' most important work, the one in which he invented his new form of geometry, has the title Rough draft for an essay on the results of taking plane sections of a cone (Brouillon project d'une atteinte aux evenemens des rencontres du Cone avec un Plan). A small number of copies was printed in Paris in 1639. Only one is now known to survive, and until this was rediscovered, in 1951, Desargues' work was known only through a manuscript copy made by Philippe de la Hire (1640 - 1718). The book is short, but very dense. It begins with pencils of lines and ranges of points on a line, considers involutions of six points (Desargues does not use or define a cross ratio), gives a rigorous treatment of cases involving 'infinite' distances, and then moves on to conics, showing that they can be discussed in terms of properties that are invariant under projection. We are given a unified theory of conics.
Desargues' famous 'perspective theorem' - that when two triangles are in perspective the meets of corresponding sides are collinear - was first published in 1648, in a work on perspective by Abraham Bosse.
It is clear that, despite his determination to explain matters in the vernacular, and without direct reference to the theorems or the vocabulary of Ancient mathematicians, Desargues is well aware of the work of ancient geometers, for instance Apollonius and Pappus. His choosing to explain himself differently may perhaps be due to his recognition that his own work was also deeply indebted to the practical tradition, specifically to the study of perspective (which is a form of conical projection). It seems highly likely that it was in fact from his work on perspective and related matters that Desargues' new ideas arose. When projective geometry was reinvented, by the pupils of Gaspard Monge (1746 -1818), the reinvention was from descriptive geometry, a technique that has much in common with perspective.
Books:
Articles: