

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Universal Algebra
المؤلف:
Burris, S. and Sankappanavar, H. P.
المصدر:
A Course in Universal Algebra. New York: Springer-Verlag, 1981
الجزء والصفحة:
...
10-2-2022
1133
Universal Algebra
Universal algebra studies common properties of all algebraic structures, including groups, rings, fields, lattices, etc.
A universal algebra is a pair , where
and
are sets and for each
,
is an operation on
. The algebra
is finitary if each of its operations is finitary.
A set of function symbols (or operations) of degree is called a signature (or type). Let
be a signature. An algebra
is defined by a domain
(which is called its carrier or universe) and a mapping that relates a function
to each
-place function symbol from
.
Let and
be two algebras over the same signature
, and their carriers are
and
, respectively. A mapping
is called a homomorphism from
to
if for every
and all
,
If a homomorphism is surjective, then it is called epimorphism. If
is an epimorphism, then
is called a homomorphic image of
. If the homomorphism
is a bijection, then it is called an isomorphism. On the class of all algebras, define a relation
by
if and only if there is an isomorphism from
onto
. Then the relation
is an equivalence relation. Its equivalence classes are called isomorphism classes, and are typically proper classes.
A homomorphism from to
is often denoted as
. A homomorphism
is called an endomorphism. An isomorphism
is called an automorphism. The notions of homomorphism, isomorphism, endomorphism, etc., are generalizations of the respective notions in groups, rings, and other algebraic theories.
Identities (or equalities) in algebra over signature
have the form
where and
are terms built up from variables using function symbols from
.
An identity is said to hold in an algebra
if it is true for all possible values of variables in the identity, i.e., for all possible ways of replacing the variables by elements of the carrier. The algebra
is then said to satisfy the identity
.
REFERENCES
Burris, S. and Sankappanavar, H. P. A Course in Universal Algebra. New York: Springer-Verlag, 1981.
http://www.thoralf.uwaterloo.ca/htdocs/ualg.html.Grätzer, G. Universal Algebra, 2nd ed. New York: Springer-Verlag, 1979.
Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, p. 1171, 2002.
الاكثر قراءة في المنطق
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)