تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Sequent Calculus
المؤلف:
Gentzen, G
المصدر:
The Collected Papers of Gerhard Gentzen (Ed. M. E. Szabo). Amsterdam, Netherlands: North-Holland, 1969.
الجزء والصفحة:
...
9-2-2022
957
Sequent Calculus
A sequent is an expression , where
and
are (possibly empty) sequences of formulas. Here,
is called the antecedent and
is called the consequent. The informal understanding of sequents is that the sequent
corresponds to
. The initial sequent of all derivations is
(1) |
The rules of inference for sequent calculus are divided in two categories: structural and logical. There are at least two logical rules for every propositional connective and every quantifier; one of them applies to the antecedent, whereas the other applies to the consequent. The structural rules are thinning,
(2) |
contraction,
(3) |
exchange,
(4) |
and cut,
(5) |
The logical rules are given by conjunction,
(6) |
disjunction,
(7) |
negation,
(8) |
implication,
(9) |
universal quantifier,
(10) |
and existential quantifier
(11) |
Here, the variable is free in
and
is obtained from
by replacing all free occurrences of
by
. The variable
occurring in the
-succedent rule and the
-antecedent rule is called the eigenvariable. It may not occur in the lower sequents of the respective rules.
Sequent calculus specifies classical first-order logic, and the same framework can also be used to specify intuitionistic logic. In order to limit derivations to intuitionistic ones, the additional constraint that every succedent may have not more one formula is added. The classical (multi-succedent) variant due to Gentzen is called LK, and the intuitionistic (single-succedent) variant is called LJ. LK can alternatively be defined as single-succedent calculus augmented with the law of excluded middle as yet another basic sequent. Proof theories based on sequent rules of inference are also called Gentzen-type. Many other logic formulations based on sequents have been introduced subsequently.
A sample derivation is provided by double negation, which is valid in the classical variant of the sequent calculus but not in the intuitionistic one.
A second derivation (which is a valid intuitionistic derivation) is shown above.
Sequent calculus is a very useful tool for proof theory, primarily because of the admissibility of the cut rule, which can be eliminated from derivations without affecting the set of derivable formulas.
REFERENCES
Gentzen, G. The Collected Papers of Gerhard Gentzen (Ed. M. E. Szabo). Amsterdam, Netherlands: North-Holland, 1969.
Kleene, S. C. Introduction to Metamathematics. Princeton, NJ: Van Nostrand, 1964.
الاكثر قراءة في المنطق
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
