تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Modular Inverse
المؤلف:
Sloane, N. J. A
المصدر:
equence A102057 in "The On-Line Encyclopedia of Integer Sequences."
الجزء والصفحة:
...
10-1-2020
1261
A modular inverse of an integer (modulo
) is the integer
such that
![]() |
A modular inverse can be computed in the Wolfram Language using PowerMod[b, -1, m].
Every nonzero integer has an inverse (modulo
) for
a prime and
not a multiple of
. For example, the modular inverses of 1, 2, 3, and 4 (mod 5) are 1, 3, 2, and 4.
If is not prime, then not every nonzero integer
has a modular inverse. In fact, a nonzero integer
has a modular inverse modulo
iff
and
are relatively prime. For example,
(mod 4) and
(mod 4), but 2 does not have a modular inverse.
![]() |
The triangle above (OEIS A102057) gives modular inverses of (mod
) for
, 2, ...,
and
, 3, .... 0 indicates that no modular inverse exists.
If and
are relatively prime, there exist integers
and
such that
, and such integers may be found using the Euclidean algorithm. Considering this equation modulo
, it follows that
; i.e.,
.
If and
are relatively prime, then Euler's totient theorem states that
, where
is the totient function. Hence,
.
REFERENCES:
Sloane, N. J. A. Sequence A102057 in "The On-Line Encyclopedia of Integer Sequences."