Christoffel Formula
المؤلف:
Szegö, G.
المصدر:
Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc.,
الجزء والصفحة:
pp. 29-30
19-1-2019
1513
Christoffel Formula
Let
{p_n(x)}" src="http://mathworld.wolfram.com/images/equations/ChristoffelFormula/Inline1.gif" style="height:14px; width:42px" /> be orthogonal polynomials associated with the distribution
on the interval
. Also let
(for
) be a polynomial of order
which is nonnegative in this interval. Then the orthogonal polynomials
{q(x)}" src="http://mathworld.wolfram.com/images/equations/ChristoffelFormula/Inline6.gif" style="height:14px; width:35px" />associated with the distribution
can be represented in terms of the polynomials
as
In the case of a zero
of multiplicity
, we replace the corresponding rows by the derivatives of order 0, 1, 2, ...,
of the polynomials
, ...,
at
.
REFERENCES:
Szegö, G. Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., pp. 29-30, 1975.
الاكثر قراءة في مواضيع عامة في الجبر
اخر الاخبار
اخبار العتبة العباسية المقدسة